射频同轴连接器

典型毫米波同轴连接器的特性:

1、 SMA连接器
SMA连接器的工作频率到22GHz,它不是一个毫米波连接器,但是它对毫米波连接器的发展有很大的影响,因此很有必要先对它作个介绍。SMA是由Bendix公司在上世纪50年代末期为半硬同轴电缆而设计的。它的配合空间用聚四氟乙烯介质填充,结构比较简单。这种连接器当初并没有打算长久使用,更没有作为一个精密连接器来考虑,因此它只是一个普通系统用的连接器。在当时情况下,由于它的体积小,能在较高频率下工作,很快得到了普及,甚至到后来发展出更新一代毫米波同轴连接器时不得不考虑与他的兼容。可是由于它先天性不足,也为后来发展小型同轴连接器带来了一些限制。SMA存在的主要问题是精度不高,不适合测试设备的需要;其次是外导体的壁比较薄,内导体插孔又是两槽结构,在使用中非常容易被磨损和发生损坏故障;再其次是使用频率不高,不能适应工作频率带达40GHz以上系统的需求。由于SMA存在这些缺陷,一些制造商就开发了一批能与SMA兼容的连接器,主要型号有3.5mm,WSMA以及后来发展的2.92mm,MPC3,KMC和WMP4等。这些连接器克服了SMA的局限性,在结构上与SMA也不相同,就外导体的接触面积讲,新开发的连接器都大大加强,提高了连接器的坚固性。

2、 3.5mm连接器
在上世纪60年代中期,美国商业部为了小型精密同轴连接器的标准化成立了一个联合工业研究会(JIRC),经过努力于1972年提出一个民用产品标准,空气传输线的尺寸缩小到3.5mm,无模工作状态下的频率扩展到36GHz。随后推出一种与它相匹配的3.5mm鸳鸯连接器(头座相同)。但由于它的精密度高,价格昂贵,阻碍了把它作为一个通用连接器而广泛使用。由于形势的需要,Hewlett-Packard等公司研制出一种高精度,价格比较便宜的3.5mm连接器,配合空间由空气介质填充,内导体插孔采用无槽结构,实际上是在有槽插孔外面加上一个无槽的保护套。额定工作频率达33GHz。它在两个绝缘子之间选择了足够大的距离,0.50英才(12.27mm),为D的3.5倍。3.5mm连接器能与SMA兼容,能进行无损地对接。在SMA工作频段范围内,3.5mm连接器的电压驻波比特性与SMA相近。3.5mm连接器最初设计是作为一种低成本,企图能代替SMA,但是它未能及时形成批量以达到提前降低成本的目的,结果使得3.5mm连接器的价格偏高,这就是3.5mm连接器未能代替SMA的原因。3.5mm连接器由于它的精密性和良好的耐磨性,特别适用于测试设备上。

3、 2.92mm连接器
2.92mm连接器在结构上3.5mm与连接器相似,只不过是更小一些,允许工作频率到46GHz,其内导体尺寸与SMA相同为0.05英寸(1.27mm)。2.92mm连接器最早是Maury Microwave公司研制出来的(MPC-3型)。由其他公司研制的这类连接器还有K型、KMC型、WMP4型等。K型连接器是在1983年由Wiltron公司研制出来的,它能与SMA、3.5mm、WSMA连接器兼容。K型连接器的心脏是它的过渡器,它用一个玻璃绝缘子实现同轴连接器到微带电路的刚性过渡,这就保证在更换连接器或维修时不会损伤电路。
毫米波同轴连接器的可靠性受到插拔力、外导体强度、配接时的应力消除情况及配接时同心度的影响。K型连接在这些方面都具有良好的性能。在正常情况下,K型连接器的插拔力为0.5磅(2.22N)而SMA是它的三倍。K型外导体的壁厚是SMA的四倍,其可靠性相当于SMA的30倍,这一点已被试验所证实。试验表明,K型连接器经一万次插拔后,其电气性能几乎没有什么变化。它特别适合于系统和测试仪器上使用。

4、 2.4mm连接器
2.4mm同轴连接器的研制成功标志着毫米波连接器发展走上一个新的台阶。在它前面发展的一系列小型同轴连接器在结构上作了不少改进,但是在连接器的坚固性和可重复性方面仍然改进得不够。这就使得仪器和校准标准方面出现一连串的问题,因为这些地方需要有更高的对准性、坚固性和可重复性。在以前开发的小型连接器由于受到要与SMA兼容的限制而影响了连接器的性能,例如,当与SMA配合时,由于SMA尺寸公差范围非常之大,能偶然发生阴中心导体(插孔)外径增大的故障,并且高频覆盖能力较小,中心接触体也很脆弱(易断)。这就迫切需要研制一种新型同轴连接器,要求无模工作到50GHz,坚固性和可重复性高并具有抗偶然故障的能力。在这样一个新的要求下,Hewlett-Packard,Omni Spectra、Amphenal等公司相继开发出一代新型小型2.4mm连接器。2.4mm连接器配合空间使用空气介质填充,达到低损耗。中心导体支撑采用高性能绝缘子,其上面的补偿孔是不通孔,能防止污物进入连接器的内部。两个绝缘子之间有足够大的距离,使互相影响减至最小。中心导体插孔采用四槽结构(用于生产级和仪器级)和无槽结构(用于计量级)。它的外形很像SMA,APC-3.5,为了不致于发生与这些连接器发生偶然配合,所以连接器的连接螺纹采用公制M7×0.75。为了保护插孔不被损坏,在插针接触插孔前外导体已配合到50%以上。2.4mm连接器在DC~50GHz整个范围内都具有良好的性能,反射损耗都小于SMA、APC-3.5、K型连接器,结构具有很高的可重复性。2.4mm连接器能适用于很宽的领域,是第一个具备有生产级、仪器级和计量级三个等级的产品。

5、 1.85和1.0mm连接器
美国Hewlett-Packard公司是一个从事电子设备和元件的制造公司,它在毫米波连接器研制中一直处于领先地位。在1986年欧洲微波会议上他们又首次推出1.85mm的连接器,使工作频率扩展到65GHz。后来Wittron公司经过改进,并于1989年1月宣称在360型网络分析仪中使用了1.85mm(V型)连接器,并能同2.4mm连接器兼容。V型连接器的结构形式与K型相同,只不过尺寸更小一些。它与微波电路的连接也是用一个过渡器——玻璃绝缘子,其中心导体的直径只有9密耳(0.23mm)。
进入上世纪90年代,Hewlett-Packard公司宣布他们又研制成功1.0mm连接器,这是目前世界上最小的毫米波连接器,内导体直径约为0.43mm(50Ω),最高工作频率达110GHz。

射频同轴连接器的工艺:

零件名称
原材料
切削加工/设备
表面处理
热处理
外导体/外壳类
黄铜棒/不锈钢/型材 车,钻,镗,铣,攻螺纹,特殊工艺./设备:凸轮自动机床;CNC自动机床.多工位;多轴;专用机床. 镀金,银,镍,锡,三元合金/滚镀,挂镀. 钝化(不锈钢);发黑 铍铜-真空充氮热处理/热处理炉黄铜青铜(必要时)-退火热处理/热处理炉
中心导体
铍铜线材/黄铜线材 车,钻,镗,铣,攻螺纹,折弯,特殊工艺./设备:凸轮自动机床;CNC自动机床.多工位;多轴;专用机床. 镀金,银,/滚镀,挂镀. 铍铜-真空充氮热处理/热处理炉黄铜青铜(必要时)-退火热处理/热处理炉
垫圈
冷轧钢带 冷冲成型/设备:冲床,工具:模具 镀金,银,镍,三元合金/滚镀,连续镀.
接触头/中心导体/弹簧垫圈
铍铜带/青铜带 冷冲成型/设备:冲床,工具:模具 镀金,银,镍,三元合金/滚镀,挂镀,连续镀 铍铜-真空充氮热处理/热处理炉青铜(必要时)-退火热处理/热处理炉
绝缘子
聚四氟乙烯/聚乙烯 车,钻,镗,铣, 模压,烧结
密封圈
硅橡胶/无硫橡胶 模压
  • 射频同轴连接器已关闭评论
    A+