射频同轴连接器

射频同轴连接器的选择与使用:

1, 射频同轴连接器的选择

同轴线代表了最为有效的将信号从源头向终端传输的方式,具体体现为同轴电缆组件,源头与终端的距离就是电缆的长度,选择射频同轴连接器最为重要的因素是所选择的电缆,电缆注定了射频同轴连接器的规格和最低要求,如尺寸大小,性能要求。所选的连接器应该有不低于电缆的性能。射频同轴连接器在电性能上应像射频同轴电缆的延伸,或者说同轴连接器与同轴电缆连接时应尽量降低对被传输信号的影响, 故特征阻抗和电压驻波比是射频同轴连接器的重要指标,连接器的特征阻抗决定了与它连接的电缆的阻抗类型. 电压驻波比反映了连接器的匹配水平.电缆和射频同轴连接器两者同时决定传输系统的损耗和变异。

正如美军标MIL-C-17定义了主要的射频同轴电缆, 美军标M-C-39012囊括了很多常见的射频同轴连接器, 它包含它所覆盖的连接器的配合,外形尺寸,材料,电镀,性能,测试方法.射频同轴连接器的品种繁多, 选择适当的射频同轴连接器对确保整机和系统的可靠性是至关重要的, 选择射频同轴连接器时, 对于特定的需求,可能会有多种RF连接器可供选择,用户一般需考虑如下因素, 逐一淘汰,最后优选出所需的产品。 1、首先按使用要求选出特性阻抗、工作频率符合要求的射频同轴连接器. 频率范围决定应用的频率上限, 连接器可以被用于更低的频率范围, 但不推荐被用于过高的频率范围, 因为过高的频率范围会使连接器的传输性能下降, 甚至传输失效. 如BNC和TNC均可与小型电缆连接, 但TNC可用于11G的场合而BNC不能用于高于4G的环境 - 这是因连接方式不同 --- 一个卡口连接和一个螺纹连接. 若应用要求最高的频率是2G, 这两个系列的连接器皆可用, 若传输信号有8G的组分, 则TNC是明显的选择. 这时可能有几个系列的产品可供选择. 再例如, 某整机工作频率为9GHz,传输特性阻抗为50Ω,则可选N、TNC、SMA、SSMA,如果频率超过12GHz,则只能选SMA、SSMA。 2、按传输功率大小、插入损耗、屏蔽要求选择适当的电缆,此时应考虑电缆成本,软电缆能满足要求最好不要用半刚或半柔性电缆。每一种RF连接器均有适配的电缆。 3、结合使用空间大小,插拔频繁程度及使用环境确定RF阴阳连接器的连接方式,即产品系列连接方式决定连接器配合的方法, 常见的连接方式有: 螺纹连接, 卡口连接, 摁扣连接, 快锁连接及盲插连接. 连接方式是连接器不同系列的主要区别. 如QMA是快锁连接而SMA是螺纹连接. 这两者的内部结构完全相同. 4、根据使用空间确定固定方式,(法兰、螺母、焊接)。 5、确定电缆端接方式,外径在5mm以下的软电缆最好采用压接方式,半刚性和半柔性电缆用焊接式,不推荐用压接式。 6、根据使用要求确定连接器外形尺寸和具体规格. 电缆的尺寸决定连接器类别, 如大型连接器,中型连接器,小型连接器, 超小型, 还是超微型.

2, 射频同轴连接器的使用

使用者必须熟悉所选定产品的性能,严格按额定条件使用,任何超负荷的使用都有可能导致射频同轴连接器失效。对于电缆连接器来说,应特别注意电缆的装接,应按供应商提供的组装说明进行装接,如果装接不当,即便电缆与连接器性能很好,组件性能也有可能很差。

射频同轴连接器设计:

射频同轴连接器不仅要实现传输线间的机械连接,而且也要完成尽可能的将更多的高频电磁能量进行传输的任务.连接器设计中所用到的材料和机械尺寸对高频传输性能几乎都有一定的影响,尤其是内部尺寸.这些材料和尺寸建立(决定)传输线的特性阻抗.连接器的特性阻抗必须接近系统的特性阻抗,否则明显的阻抗不匹配会引起显著的信号反射问题,这就不能很好履行射频同轴连接器要尽可能多的传输高频电磁波能量的职能.同轴连接器虽然是同轴结构,但是连接器的本质特性(如连接界面的存在-介质的变化,内导体和介质固定的需要)注定连接器的导体的内外径和介质材料不可能一成不变.比如倒刺(barb)和滚花(knurl)的出现.为了减小信号反射,适当的补偿台阶或凹槽可能就非常必要.在这种不规则的结构里电磁波的传播是极为复杂的,但是为了减小信号的反射我们不得不掌握信号在这种复杂结构的传输特性.在这种情况下我们借用先进的分析工具不失为明智之举,故电磁波的有限元分析现在被普遍应用到高频信号传输里,如HFSS和CST软件.这种分析工具的很大优势是,我们在没有做出样品和测试样品之前就能根据我们的模型对产品的高频传输性能进行分析,修改,优化直到分析结构是满意的.然后才付诸于制样和测试.当然由于分析模型跟实际样品存在一定的差异,所以分析结果跟实际测试结果必然有一定差距.但是在实际仿真分析中,往往会将模型优化到一定的性能,这样一般有足够的空间来吸收生产,装配和测试的变异.电磁波的有限元分析结果跟实际测试结果存在一定差距的主要原因如下:
1,实际测试的界面与模型界面存在差异;
2,模型中电缆的性能是理想化的,但实际中电缆介质的介电常数和尺寸是存在变异的;
3,连接器的介质的介电常数不能被精准掌控;
4,测试时可能没有所需的校准件,往往通过转接头或gating的方式来测量数据;
5,为了降低分析的复杂性,往往省略细微结构,如小的空气间隙被介质取代,再比如倒刺与介质的过盈干涉部位;
6,装配时,无法避免零件被压变形以及变形致使零件的相对位置与模型不一致;
7,建模时往往会将零件的圆角改为倒角,甚至将该特征忽略;
8,连接器建模时用的是名义尺寸,但实际零件是有公差的;
9,仿真分析本身存在一定误差,无法保证100%精准;
10,连接器采用压接(crimping)的方式连接线缆时,电缆的变形很大,变异也很大,模型往往无法体现这种状况.

如何选择射频同轴线缆/电缆(coaxial cable)

为新的产品选择最佳的同轴线缆需要理解应用要求和应用环境,也要清楚可供选择的电缆范围.只有仔细平衡好性能和价格才能做出最佳的选择.那该如何全方位系统来选择射频同轴线缆呢?下面逐一介绍选择同轴电缆的方方面面.
特性阻抗 
同轴线缆的特性阻抗决定于外导体内径与内导体外径的比值以及内外导体间的介质的介电常数.由于趋肤效应(请参见本文相关解释)电磁波是在导体的表面传输,故重要的直径是外导体的内径和内导体的外径.同轴线缆的阻抗需与系统的阻抗匹配.常见的同轴线缆的阻抗是50,75,95欧姆,其他从35到185欧姆的阻抗有时也能见到.50欧姆电缆用于微波和无线通讯.75欧姆线缆典型应用是有线电视和视频.95欧姆线缆常用于数据传输.为了达到最好的系统性能,所选的线缆阻抗必须与系统别的零部件阻抗匹配,在所有常见的同轴线缆中,75欧姆提供最小的衰减而35欧姆提供最大的功率传输能力.对于实际(非理想介质和导体)的同轴电缆,这些方面的差异并不大.线缆及相关零部件的特性阻抗的可选择性一般是我们选择系统的特性阻抗的决定性因素.
信号反射:驻波比,回波损耗,反射因素及阻抗一致性.
当RF能量进入同轴电缆组件(coaxial cable assembly)后出现3种现象:1,能量传输到电缆的另一端-这往往是希望的;2,能量在线缆的传输过程中出现衰减/损耗:部分被转化为热量而另外一部分被泄露到线缆外面;3,能量被反射到线缆组件输入端.能量被反射到输入端是由于电缆组件的阻抗在长度方向的变化,包括电缆与被连接的元器件之间的阻抗变化,连接器及连接器与线缆的连接界面是典型的反射源.线缆本身也会引起反射,它的反射来源之一是由于工艺造成的阻抗在线缆长度方向上的周期性变化,这种变化在某特定频率会叠加产生特性跳跃.低回波损耗往往是同轴元器件(如同轴线缆,同轴连接器及线缆组件)优越性能的特征.它表明线缆在长度方向的一致性保持的有多好,也显示同轴连接器是否被正确设计和(与线缆)连接以及不同尺寸的传输线在连接器内部的过渡被补偿的多好!它是频率的函数,一般是频率越高回波损耗越大.在很多应用中,低反射是系统的关键性能指标,在这种场合选择同轴线缆和同轴连接器时考虑这方面的因素就必不可少.此外为了满足性能要求,必须确保同轴连接器与同轴电缆被正确连接.对于电压驻波比有高要求的场合,采购完整的由专业厂家组装和测试的线缆组件不失为明智之举.需留意由于反射的缘故在特定频率实际的输入阻抗与线缆的特性阻抗会存在一定的差异.一定长度的电缆的电压驻波比反映了电缆的实际输入阻抗与它的平均特性阻抗的差异.在工作温度范围内,较长的电缆的阻抗一般变化不大--小于2%.为了匹配的目的,生产出特性阻抗不断变化的线缆是可能的.故同轴电缆可被用作匹配信号源和负载的宽带阻抗转换器.但这种电缆需根据应用要求特别设计定制.
衰减 
衰减是信号沿着线缆传输的损失.射频信号通过线缆时,一部分转化为热一部分穿过屏蔽层被泄露离开线缆.因为衰减随着频率而增大而增加,故衰减一般被表征为在特定频率单位长度的分贝数.一般的应用是尽量减小信号在线缆传输过程中的损耗或控制在规定范围内.最小的损耗是0分贝的衰减或是输入输出的功率比是1:1.因为对于相同的结构来说线缆越大衰减越小故减小衰减意味着增大线缆的个头.衰减决定于铜损(导电性损耗)和介损(绝缘性损耗).大的电缆具有更好的导电能力,更小的铜损---更小的衰减,但介损与尺寸大小没有关系.介损与频率呈现线性关系而铜损与频率的平方根成正比---趋肤效应,故频率增大时介损比铜损明显---频率较高时介损是衰减的主要因素.温度升高时导体的导电率降低,介质的功率因子增大,故温度升高时电缆的衰减增大,电缆在不同温度的衰减情况需用温度系数来修正.为了选择出所需的电缆,先确定系统允许电缆在最高的使用频率时的衰减,在根据应用环境的温度状况修正允许的衰减量.
在频率响应上衰减的一致性 
电缆的衰减可能不会跟频率一致的变化.随机和周期性的阻抗变化引起随机和周期性的衰减响应,以致可能出现窄频的衰减跳跃(在特定频率的极端叠加).若必要,线缆可被截成各种长度从而定义线缆在客户指定的频率范围内的衰减变异范围.
衰减的稳定性 
随着时间的流逝和弯曲次数的增加,编织线缆的衰减会增大.随着时间而变化的原因是编织屏蔽层被腐蚀,护套塑化剂使介质被污染以及水分渗透护套.采用合适的技术用合适的材料对编织层进行封装能降低甚至避免这三方面因素的影响.衰减的退化在1GHz以上更明显.裸铜和镀锡铜的编织的衰减退化比镀银编织的衰减退化明显的多.在1GHz以下,镀锡编织的线缆比新的裸铜编织线缆高出15-20%的衰减,但比裸铜编织电缆稳定.发泡聚乙烯介质的编织电缆比相同线芯相同阻抗的实心聚乙烯编织线缆低15-40%的衰减.但有些发泡聚乙烯会吸潮引起衰减增大.含塑化剂的PVC护套一段时间后塑化剂会渗入到介质增大衰减,故在对衰减稳定性要求比较高的场合需用非污染性的PVC护套线缆.保证衰减稳定性的理想办法是使用密封的同轴线缆组件.在恶劣的环境下使用受保护的编织的同轴线缆是必要的.
平均功率 
同轴线缆电损耗导致内导体,外导体及介质产生热量.线缆能承受的的功率大小跟线缆的散热能力有关.线缆能承受的功率大小的最终决定因素是线缆材料所允许的最大工作温度,尤其是介质-线缆的大部分热量来自于内导体.一般来说,某种线缆能承受的的功率大小跟它的衰减成正比,跟它的个头大小直接相关.别的相关因素是线缆(尤其是介质)热传导能力.电缆的功率能力需用环境温度,海拔及电压驻波比(具体应用所决定)3因素来修正.高的环境温度和海拔不利于热传导故降低线缆的功率能力.大的电压驻波比引起线缆局部热点(hot spots)从而降低功率大小.
最大工作电压 
施加在电缆的连续电压和峰值电压需低于最大额定电压.电缆有两种独立的额定电压:电晕电压和绝缘耐压.电晕是电压产生电离的一种现象,它产生杂音,引起介质永久损坏,甚至最终击穿电缆.故电缆不能持续出现电晕现象,最大工作电压必须小于最小电晕电压.电晕电压的确定需要精密的仪器,该仪器能够探测到电压引起的电离杂音的产生.介质绝缘耐压或绝缘强度是衡量线缆被击穿时的电压大小.它的测试对设备的精密度要求就没有那么高---将一定电压施加到电缆持续一定时间,监控线缆的电流情况.随着线缆组件所在的海拔增大,同轴连接器与线缆连接界面处的空气压力减小会使线缆组件的绝缘强度降低.
屏蔽和串扰 
同轴线缆屏蔽效果决定于它的外导体的结构,常见的结构如下:a,单编织,由镀银或镀锡或未镀圆铜线编织而成;b,双编织,由两层镀银或镀锡或未镀圆铜线编织组成,层间没有绝缘介质;c,三同轴,由两层镀银或镀锡或未镀圆铜线编织组成,层间有绝缘介质;d,带线编织,编织是带状铜线非圆铜线(90%覆盖率);e,螺旋铜绕带(100%覆盖率);f,实心套,由铜或铝管制成.在实际应用中决定实心管屏蔽电缆组件的屏蔽效果的最终因素是同轴连接器的屏蔽效果.两平行同轴电缆间的串扰决定于两线的串扰因素,串扰因素决定于相互间的距离,相对位置,两线所处的环境以及接地的做法.很多线缆为了加强屏蔽效果往往采用特殊的结构.
电容 
电缆的电容跟介质和特性阻抗有关,电缆的阻抗越高单位长度的电容就越小,以致降低数据的传输能力.
传输速度 
同轴电缆的传播速度主要决定于内外导体间的介质的介电常数.这个速度常表示为真空中光速的百分比.用于延时的同轴线缆可利用信号在大介电常数的介质传播速度慢的特点来实现最短的距离产生最大的时延要求.但也要考虑到传播速度慢比速度快的损耗更大的现象.
电长度的稳定性 
有些应用(天线的馈电系统)对同轴电缆组件的电长度有一定的要求,故首先要控制好组件的物理长度.在实际应用中,电长度随着温度,弯曲,拉伸以及环境因素而变化是非常关键的.每种结构的同轴电缆随温度的变化率是不一样的,也就是说每种电缆的电长度的稳定性是不一样的.这应根据应用的要求做出合适的选择.
截止频率 
同轴线缆的截止频率是指在同轴线缆内不同于横电磁波模式(TEM)的电磁波模式能够出现的频率.这种情况并不意味着横电磁波会大为衰减.截止频率是导体平均直径和线缆传播速度的函数.更高的传播模式只会在阻抗不连续处出现,在很多场合线缆工作于截止频率之上并不出现电压驻波比或插入损耗明显增大的情况.但是同轴线缆还是被推荐工作在截止频率以下.
同轴线缆的脉冲响应 
进行同轴线缆的时域响应分析可能会遇到这些问题.---阻抗与反射.#选择适合系统要求的阻抗.#阻抗在线缆的长度方向变化;+/-5%的阻抗变化并不罕见;电缆阻抗能被控制在+/-2%范围;不推荐精度更高的公差.---上升沿时间和幅度.输出地上升沿时间是输入上升沿时间,脉冲宽度和线缆衰减的函数.线缆的温度升高会引起上升沿时间增大和脉冲幅度减小.---过冲(overshoot)和前冲/前置尖头信号(preshoot).在同轴线缆的测试可能会遇到过冲现象,这是因为线缆局部有限的反射所致.这种现象在实心介质线缆并不常见.---脉冲回波.当一个很窄的脉冲出现在同轴电缆时,上面提到的失真会出现.此外,当最初的脉冲过后可能会引起另外一个小脉冲出现,这个脉冲回波是线缆有限的周期性反射所致.一般来说这种回波水平可被忽略.
线缆的噪音(noise)
同轴线缆的现象之一是,抖动时产生响音和电子杂音.响音来自于线缆内部的机械运动.合适的设计能使这种机械动静及相关的摩擦力最小化.电子杂音则源自静电效应,在常见的RG线缆,测试到的电压降会高于0.5V.防止线缆介质与导体的相互运动或通过半导体材料层消除导体与介质间的静电能使杂音电压最小化.当然低噪音射频电缆结构也要考虑它自身的寿命和应用环境问题.
工作温度范围 
柔性射频线缆的工作温度范围主要取决于介质和护套材料工作温度范围.只有镀银的导体适合工作于80°C以上.
柔软性 
内导体是多股线外导体是编织层的射频同轴线缆主要应用于线缆需经常弯曲,抖动的场合.相对于实心内导体射频电缆多股线内导体的线缆呈现更高的衰减.一般来说,内导体股数越多的射频电缆柔韧性越好衰减越大.标准的编织层外导体结构的射频同轴线缆能够承受以20倍于线缆外径的为直径180度的弯曲角度的折弯1000次以上.柔性射频电缆一般被半径大于线缆外径10倍的盘子储存和运输.它们若被固定安装则推荐的最小弯曲半径是线缆外径的5倍.再小些的弯曲半径也能实现,一般来说,为了改善柔软性会对编织进行特别设计.铜管或铝管做屏蔽层的半刚射频同轴线缆一般不能承受以20倍于线缆外径的为直径大于180度的弯曲角度的折弯.半刚射频电缆一般被半径大于线缆外径20倍的盘子储存和运输.它们若被弯曲安装则推荐的最小弯曲半径是线缆外径的10倍.半刚线缆若被以5倍于线缆外径的直径所弯曲往往会显示机械和电气性能的退化.
环境抵御性 
射频同轴线缆的环境抵御性主要体现在以下方面:
a,耐候性;b,耐潮湿性;c,耐盐水浸泡能力;d,耐腐蚀气体性;e,耐电池反应/腐蚀能力;f,防燃烧性;
机械强度 
射频同轴电缆的断裂强度主要决定于外导体的强度.正常来说,如果电缆内导体断裂前有10%的延伸率,电缆至少能达到外导体70%的断裂强度.对于铜包刚或铜合金的内导体要小心,因为这种内导体断裂前的延伸率在1-10%范围内.小于26AWG线缆的内导体装配时就容易断裂.市面上也有抗拉强度不小于750Mpa延伸率10%的特殊线缆内导体.
线缆的认证 
射频同轴电缆被用到各个领域,有的领域要求对线缆进行认证,如军标认证,LL认证,CSA认证,3C认证等.

  • 射频同轴连接器已关闭评论
    A+